* More accurate progress description

* Add thread lock to face analyser

* Use as_completed() for thread pool

* Show memory usage in progress bar

* Using Queue for dynamic thread processing

* Fix typing

* Introduce pick_quere() to allocate frames per future

* Bump version and add missing hook function

* Fix pick_queue()

* Introduce post process (#587)

* Introduce post_process to flush VRAM for example

* Delete frame processor instances

* Limit tensorflow usage to 1GB VRAM

* Set None instead of del

* Remove deprecated args

* Update gui preview

* Remove choices restriction from frame-processor and improve help output

* faithful donation label

* original donate button colors

* Introduce Frame processor xxx crashed

* ^_^ ^_^ ^_^ ^_^ ^_^

* Update GUI demo

---------

Co-authored-by: Somdev Sangwan <s0md3v@gmail.com>
This commit is contained in:
Henry Ruhs 2023-06-26 07:49:43 +02:00 committed by GitHub
parent b41149e4a2
commit 3d02b26766
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 113 additions and 102 deletions

View File

@ -15,7 +15,7 @@ jobs:
- run: pip install flake8
- run: pip install mypy
- run: flake8 run.py roop
- run: mypy --config-file mypi.ini run.py roop
- run: mypy run.py roop
test:
runs-on: ubuntu-latest
steps:

View File

@ -31,30 +31,21 @@ Additional command line arguments are given below. To learn out what they do, ch
```
options:
-h, --help show this help message and exit
-s SOURCE_PATH, --source SOURCE_PATH
select an source image
-t TARGET_PATH, --target TARGET_PATH
select an target image or video
-o OUTPUT_PATH, --output OUTPUT_PATH
select output file or directory
--frame-processor {face_swapper,face_enhancer} [{face_swapper,face_enhancer} ...]
pipeline of frame processors
--keep-fps keep original fps
--keep-audio keep original audio
--keep-frames keep temporary frames
--many-faces process every face
--video-encoder {libx264,libx265,libvpx-vp9}
adjust output video encoder
--video-quality VIDEO_QUALITY
adjust output video quality
--max-memory MAX_MEMORY
maximum amount of RAM in GB
--execution-provider {cpu,...} [{cpu,...} ...]
execution provider
--execution-threads EXECUTION_THREADS
number of execution threads
-v, --version show program's version number and exit
-h, --help show this help message and exit
-s SOURCE_PATH, --source SOURCE_PATH select an source image
-t TARGET_PATH, --target TARGET_PATH select an target image or video
-o OUTPUT_PATH, --output OUTPUT_PATH select output file or directory
--frame-processor FRAME_PROCESSOR [FRAME_PROCESSOR ...] frame processors (choices: face_swapper, face_enhancer, ...)
--keep-fps keep original fps
--keep-audio keep original audio
--keep-frames keep temporary frames
--many-faces process every face
--video-encoder {libx264,libx265,libvpx-vp9} adjust output video encoder
--video-quality [0-51] adjust output video quality
--max-memory MAX_MEMORY maximum amount of RAM in GB
--execution-provider {cpu} [{cpu} ...] available execution provider (choices: cpu, ...)
--execution-threads EXECUTION_THREADS number of execution threads
-v, --version show program's version number and exit
```
Looking for a CLI mode? Using the -s/--source argument will make the run program in cli mode.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 23 KiB

View File

View File

@ -33,11 +33,11 @@ warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser()
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
program.add_argument('-s', '--source', help='select an source image', dest='source_path')
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
program.add_argument('--frame-processor', help='frame processors (choices: face_swapper, face_enhancer, ...)', dest='frame_processor', default=['face_swapper'], nargs='+')
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False)
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
@ -45,16 +45,10 @@ def parse_args() -> None:
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-provider', help='available execution provider (choices: cpu, ...)', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
program.add_argument('-v', '--version', action='version', version=f'{roop.metadata.name} {roop.metadata.version}')
# register deprecated args
program.add_argument('-f', '--face', help=argparse.SUPPRESS, dest='source_path_deprecated')
program.add_argument('--cpu-cores', help=argparse.SUPPRESS, dest='cpu_cores_deprecated', type=int)
program.add_argument('--gpu-vendor', help=argparse.SUPPRESS, dest='gpu_vendor_deprecated')
program.add_argument('--gpu-threads', help=argparse.SUPPRESS, dest='gpu_threads_deprecated', type=int)
args = program.parse_args()
roop.globals.source_path = args.source_path
@ -72,27 +66,6 @@ def parse_args() -> None:
roop.globals.execution_providers = decode_execution_providers(args.execution_provider)
roop.globals.execution_threads = args.execution_threads
# translate deprecated args
if args.source_path_deprecated:
print('\033[33mArgument -f and --face are deprecated. Use -s and --source instead.\033[0m')
roop.globals.source_path = args.source_path_deprecated
roop.globals.output_path = normalize_output_path(args.source_path_deprecated, roop.globals.target_path, args.output_path)
if args.cpu_cores_deprecated:
print('\033[33mArgument --cpu-cores is deprecated. Use --execution-threads instead.\033[0m')
roop.globals.execution_threads = args.cpu_cores_deprecated
if args.gpu_vendor_deprecated == 'apple':
print('\033[33mArgument --gpu-vendor apple is deprecated. Use --execution-provider coreml instead.\033[0m')
roop.globals.execution_providers = decode_execution_providers(['coreml'])
if args.gpu_vendor_deprecated == 'nvidia':
print('\033[33mArgument --gpu-vendor nvidia is deprecated. Use --execution-provider cuda instead.\033[0m')
roop.globals.execution_providers = decode_execution_providers(['cuda'])
if args.gpu_vendor_deprecated == 'amd':
print('\033[33mArgument --gpu-vendor amd is deprecated. Use --execution-provider cuda instead.\033[0m')
roop.globals.execution_providers = decode_execution_providers(['rocm'])
if args.gpu_threads_deprecated:
print('\033[33mArgument --gpu-threads is deprecated. Use --execution-threads instead.\033[0m')
roop.globals.execution_threads = args.gpu_threads_deprecated
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
@ -125,7 +98,9 @@ def limit_resources() -> None:
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_memory_growth(gpu, True)
tensorflow.config.experimental.set_virtual_device_configuration(gpu, [
tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)
])
# limit memory usage
if roop.globals.max_memory:
memory = roop.globals.max_memory * 1024 ** 3
@ -173,6 +148,7 @@ def start() -> None:
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path)
frame_processor.post_process()
release_resources()
if is_image(roop.globals.target_path):
update_status('Processing to image succeed!')
@ -190,6 +166,7 @@ def start() -> None:
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_video(roop.globals.source_path, temp_frame_paths)
frame_processor.post_process()
release_resources()
# handles fps
if roop.globals.keep_fps:

View File

@ -1,3 +1,4 @@
import threading
from typing import Any
import insightface
@ -5,14 +6,16 @@ import roop.globals
from roop.typing import Frame
FACE_ANALYSER = None
THREAD_LOCK = threading.Lock()
def get_face_analyser() -> Any:
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
with THREAD_LOCK:
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers)
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
return FACE_ANALYSER

View File

@ -1,2 +1,2 @@
name = 'roop'
version = '1.0.1'
version = '1.1.0'

View File

@ -1,6 +1,8 @@
import sys
import os
import importlib
from concurrent.futures import ThreadPoolExecutor
import psutil
from concurrent.futures import ThreadPoolExecutor, as_completed
from queue import Queue
from types import ModuleType
from typing import Any, List, Callable
from tqdm import tqdm
@ -12,8 +14,10 @@ FRAME_PROCESSORS_INTERFACE = [
'pre_check',
'pre_start',
'process_frame',
'process_frames',
'process_image',
'process_video'
'process_video',
'post_process'
]
@ -22,9 +26,9 @@ def load_frame_processor_module(frame_processor: str) -> Any:
frame_processor_module = importlib.import_module(f'roop.processors.frame.{frame_processor}')
for method_name in FRAME_PROCESSORS_INTERFACE:
if not hasattr(frame_processor_module, method_name):
sys.exit()
except ImportError:
sys.exit()
raise NotImplementedError
except (ImportError, NotImplementedError):
quit(f'Frame processor {frame_processor} crashed.')
return frame_processor_module
@ -38,19 +42,47 @@ def get_frame_processors_modules(frame_processors: List[str]) -> List[ModuleType
return FRAME_PROCESSORS_MODULES
def multi_process_frame(source_path: str, temp_frame_paths: List[str], process_frames: Callable[[str, List[str], Any], None], progress: Any = None) -> None:
def multi_process_frame(source_path: str, temp_frame_paths: List[str], process_frames: Callable[[str, List[str], Any], None], update: Callable[[], None]) -> None:
with ThreadPoolExecutor(max_workers=roop.globals.execution_threads) as executor:
futures = []
for path in temp_frame_paths:
future = executor.submit(process_frames, source_path, [path], progress)
queue = create_queue(temp_frame_paths)
queue_per_future = len(temp_frame_paths) // roop.globals.execution_threads
while not queue.empty():
future = executor.submit(process_frames, source_path, pick_queue(queue, queue_per_future), update)
futures.append(future)
for future in futures:
for future in as_completed(futures):
future.result()
def create_queue(temp_frame_paths: List[str]) -> Queue[str]:
queue: Queue[str] = Queue()
for frame_path in temp_frame_paths:
queue.put(frame_path)
return queue
def pick_queue(queue: Queue[str], queue_per_future: int) -> List[str]:
queues = []
for _ in range(queue_per_future):
if not queue.empty():
queues.append(queue.get())
return queues
def process_video(source_path: str, frame_paths: list[str], process_frames: Callable[[str, List[str], Any], None]) -> None:
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
total = len(frame_paths)
with tqdm(total=total, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
progress.set_postfix({'execution_providers': roop.globals.execution_providers, 'threads': roop.globals.execution_threads, 'memory': roop.globals.max_memory})
multi_process_frame(source_path, frame_paths, process_frames, progress)
multi_process_frame(source_path, frame_paths, process_frames, lambda: update_progress(progress))
def update_progress(progress: Any = None) -> None:
process = psutil.Process(os.getpid())
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024
progress.set_postfix({
'memory_usage': '{:.2f}'.format(memory_usage).zfill(5) + 'GB',
'execution_providers': roop.globals.execution_providers,
'execution_threads': roop.globals.execution_threads
})
progress.refresh()
progress.update(1)

View File

@ -1,4 +1,4 @@
from typing import Any, List
from typing import Any, List, Callable
import cv2
import threading
import gfpgan
@ -16,6 +16,17 @@ THREAD_LOCK = threading.Lock()
NAME = 'ROOP.FACE-ENHANCER'
def get_face_enhancer() -> Any:
global FACE_ENHANCER
with THREAD_LOCK:
if FACE_ENHANCER is None:
model_path = resolve_relative_path('../models/GFPGANv1.4.pth')
# todo: set models path https://github.com/TencentARC/GFPGAN/issues/399
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
return FACE_ENHANCER
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://huggingface.co/henryruhs/roop/resolve/main/GFPGANv1.4.pth'])
@ -29,15 +40,10 @@ def pre_start() -> bool:
return True
def get_face_enhancer() -> Any:
def post_process() -> None:
global FACE_ENHANCER
with THREAD_LOCK:
if FACE_ENHANCER is None:
model_path = resolve_relative_path('../models/GFPGANv1.4.pth')
# todo: set models path https://github.com/TencentARC/GFPGAN/issues/399
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
return FACE_ENHANCER
FACE_ENHANCER = None
def enhance_face(temp_frame: Frame) -> Frame:
@ -56,13 +62,13 @@ def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
result = process_frame(None, temp_frame)
cv2.imwrite(temp_frame_path, result)
if progress:
progress.update(1)
if update:
update()
def process_image(source_path: str, target_path: str, output_path: str) -> None:

View File

@ -1,4 +1,4 @@
from typing import Any, List
from typing import Any, List, Callable
import cv2
import insightface
import threading
@ -15,6 +15,16 @@ THREAD_LOCK = threading.Lock()
NAME = 'ROOP.FACE-SWAPPER'
def get_face_swapper() -> Any:
global FACE_SWAPPER
with THREAD_LOCK:
if FACE_SWAPPER is None:
model_path = resolve_relative_path('../models/inswapper_128.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers)
return FACE_SWAPPER
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx'])
@ -34,14 +44,10 @@ def pre_start() -> bool:
return True
def get_face_swapper() -> Any:
def post_process() -> None:
global FACE_SWAPPER
with THREAD_LOCK:
if FACE_SWAPPER is None:
model_path = resolve_relative_path('../models/inswapper_128.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers)
return FACE_SWAPPER
FACE_SWAPPER = None
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
@ -61,18 +67,14 @@ def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
source_face = get_one_face(cv2.imread(source_path))
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
try:
result = process_frame(source_face, temp_frame)
cv2.imwrite(temp_frame_path, result)
except Exception as exception:
print(exception)
pass
if progress:
progress.update(1)
result = process_frame(source_face, temp_frame)
cv2.imwrite(temp_frame_path, result)
if update:
update()
def process_image(source_path: str, target_path: str, output_path: str) -> None:

View File

@ -153,6 +153,6 @@
}
},
"RoopDonate": {
"text_color": ["gray74", "gray60"]
"text_color": ["#3a7ebf", "gray60"]
}
}

View File

@ -94,7 +94,7 @@ def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.C
status_label = ctk.CTkLabel(root, text=None, justify='center')
status_label.place(relx=0.1, rely=0.9, relwidth=0.8)
donate_label = ctk.CTkLabel(root, text='Become a GitHub Sponsor', justify='center', cursor='hand2')
donate_label = ctk.CTkLabel(root, text='^_^ Donate to project ^_^', justify='center', cursor='hand2')
donate_label.place(relx=0.1, rely=0.95, relwidth=0.8)
donate_label.configure(text_color=ctk.ThemeManager.theme.get('RoopDonate').get('text_color'))
donate_label.bind('<Button>', lambda event: webbrowser.open('https://github.com/sponsors/s0md3v'))

View File

@ -108,7 +108,7 @@ def clean_temp(target_path: str) -> None:
def has_image_extension(image_path: str) -> bool:
return image_path.lower().endswith(('png', 'jpg', 'jpeg'))
return image_path.lower().endswith(('png', 'jpg', 'jpeg', 'webp'))
def is_image(image_path: str) -> bool: